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ABSTRACT

Using Agent-Based Models to Understand Multi-Operator Supervisory
Control

Yisong Guo
Department of Computer Science, BYU

Master of Science

As technology advances, many practical applications require human-controlled robots.
For such applications, it is useful to determine the optimal number of robots an operator
should control to maximize human efficiency given different situations. One way to achieve
this is through computer simulations of team performance. In order to factor in various
parameters that may affect team performance, an agent-based model will be used. Agent-
based modeling is a computational method that enables a researcher to create, analyze, and
experiment with models composed of agents that interact within an environment [16]. We
construct an agent-based model of humans interacting with robots, and explore how team
performance relates to different agent parameters and team organizational structures [22].
Prior work describes interaction between a single operator and multiple robots, while this work
includes multi-operator performance and coordination. Model parameters include neglect
time, interaction time, operator slack time, level of robot autonomy, etc. Understanding the
parameters that influence team performance will be a step towards finding ways to maximize
performance in real life human-robot systems.

Keywords: Computer, agent-based model, simulation
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Chapter 1

Introduction

In recent years, there has been an enormous increase in the number of robots used

to complete monotonous or dangerous tasks for humans [14]. Although robots used in such

tasks exhibit sophisticated autonomy, robots in many applications require frequent attention

from human operators to ensure that performance is satisfactory. This interaction between

human operators and robots needs to be analyzed and studied in order to increase robot

task efficiencies. In this thesis, we use a technique called agent-based simulation to study the

interaction between human operators and robots.

1.1 Current Uses of Teleoperated Autonomous Robots

Robots have been designed and used to help, and sometimes replace, humans in many

dangerous, tedious and monotonous tasks. These tasks, when performed by humans, often

yield low performance or pose a high threat to their safety. With the help of robots, these

tasks can be completed more quickly, safely, and efficiently. A few examples are listed here.

When a hiker is reported missing, a search party is organized and sent out to find the

missing individual. This party can consist of volunteers, paid professionals and relatives of

the missing hiker. The search party will then “comb” the ground where the missing hiker is

likely to be, which can be very time consuming. As time goes by, the chances of finding the

missing hiker drops exponentially, so time is a critical issue. However, wilderness search and

rescue teams can use Unmanned Air Vehicles (UAVs) mounted with a camera that scans

the ground and feeds live video to searchers who can use the video to scan an area for the

1
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missing hiker. This has the potential to not only save time and resources, but also increase

the chance of finding the missing hiker quickly.

Another field where remote robots are greatly utilized is underwater exploration.

Many underwater caves and caverns are either too deep or too small for a diver or manned

submarine to maneuvre through, so the need for remote diving robots arises. They can go

very deep without having problems with pressure, and their compactness makes them able

to move around without much difficulty. Since they are unmanned, no human lives are in

danger when they are sent to explore an unstable cave or trench miles below the surface.

In the military, remote robots have been mostly used for reconnaissance missions.

UAVs, mine sweepers, explosive ordnance disposal robots, etc., have all greatly reduced the

threat to human lives in the tasks that they do, by separating the human operators from

the physical dangers, such as being shot down by enemy anti-air defense or a possilbe bomb

explosion.

Robots have the potential to make our lives much easier, safer and more efficient, but

we must understand how to design systems that allow humans and robots to act effectively

together. In this thesis, we use the metaphor of a team to explain an ideal interaction between

humans and robots.

1.2 Human Robot Teams

Since the beginning of time, humans have been social animals. We have always approached

problems as cooperative teams when the problem is too great for a single person to manage.

We formulate the problem, devise plans to solve it, then divide and share the work and

responsibilities. Each person in the team will engage in the tasks allocated, and work is

considered complete when every member in the team has completed his/her given tasks and

responsibilities. Note here, that the end results are not the works of any single member in

the team, it is the sum of the collective work.

2



www.manaraa.com

If robot autonomy is sufficiently high and demands on human attention are sufficiently

low, prior work indicates that it is possible for a single operator to manage multiple robots [8].

Finding ways for operators to control multiple robots effectively requires a deep understanding

of the fundamental principles of multi-robot supervisory control. In this context supervisory

control occurs when “one or more human operators are intermittently programming and

continually receiving information from a robot that itself closes an autonomous control loop

through artificial effectors to the controlled process or task environment” [28].

Given a team of robots, there is a trend in the literature to try to maximize so-called

fan-out. Fan-out has been described as the maximum number of robots that can be managed

by a single operator [26]. Although fan-out is a good metric, the real goal is not to maximize

the number of robots, but to maximize team performance; in practice, factors such as stress,

cognitive workload and many other confounding factors play an important role in team

performance.

While tasks can sometimes be completed with only a single operator controlling one

team of robots, often there is a need for multiple teams and operators. For example, in

wilderness search and rescue, multiple UAVs and operators could collaborate to search for a

missing person to increase the chance of quickly finding the person. Tasks such as this require

a lot of synchronization of the operators, which implies that factors like communication and

team organizational structure are critical.

The goal of this thesis is to find an optimal way to assign agents to one or more

operators that would maximize the performance of the whole team. We approach this by

modeling the multi-operator supervisory control problem with different parameters using

agent-based simulation. Various key parameters that limit or enhance the performance

of multi-operator teams include operator workload (utilization), communication overhead,

mishandling, etc. We argue that organizations that properly respect these parameters are

more likely to produce high-functioning teams than organizations that myopicly insist on

maximizing fan-out.

3
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1.3 Thesis Statement

Agent-based simulation can be used to discover parameters that have strong influences on

the performance of multi-operator/multi-robot teams. Organizations that properly respect

these parameters produce teams that perform better than teams that myopically focus on

maximizing fan-out.

1.4 Thesis Organization

Chapter one is the introduction, it introduces the current uses of autonomous robots and

human robot teams.

Chapter two describes the related literature, such as task performance, scheduling,

workload, stress, and communication, etc.

Chapter three contain the methods: the assumptions made, how we are modeling

performance, slack, communication, etc.

Chapter four has the results. Resuls obtained in the simulations are presented and

explained here.

Chapter five is the conclusion and future work.

4
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Chapter 2

Related Literature

In this chapter we review and discuss relevant research in areas that relate to human-

robot team performance. This review will provide readers with sufficient knowledge to

understand and participate in discussions of how we can exploit and improve the performance

of human robot teams.

2.1 Operator Performance

Prior work on operator performance includes fundamental ideas in (a) task scheduling, that

may have periods of “slack” time and models the operator as a “server” and interactions with

robots as tasks [24] [35]; and (b) cognitive workload and attention, which analyzes cognitive

factors that constrain the operator’s judgement and ability to perform. This subsection will

elaborate more on these two areas, starting with possible metrics for evaluating performance.

2.1.1 Task Performance

A good metric for evaluating performance would be how satisfactory the tasks are completed.

This could include the amount of time taken for completion, amount of fuel used, amount

of space covered, etc. It can vary depending on the tasks being evaluated, and some tasks

may even require having multiple performance metrics. For example, in wilderness search

and rescue, a reasonable performance metric would be how much time it takes to completely

search through an area, since the likelihood of locating the missing person drops with time;

while for a chemical sniffing task, recall and precision will be good and reasonable metrics.

5
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2.1.2 Scheduling

Work has been done on task scheduling in order to improve operator performance by reducing

operator response time due to task waiting [10]. Various techniques to make operators more

effective at scheduling tasks include developing automation aids [2], using visual aids [11],

etc. Automation aids can significantly decrease operator load by automating the regular

routines such as UAV flight path patterns; while visual aids can represent different elements

in different color and shapes, thus saving the operator from categorizing all the elements and

facilitating greater awareness of the environment and situation. For example, in air combat,

friendly aircrafts may be blue dots on the radar while hostile units may be represented by

red triangles.

2.1.3 Cognitive Workload, Stress and Performance

Intuitively, there is a tight relationship between operator cognitive workload and factors that

impact operator stress level and operator performance. This subsection defines some key

components of workload and stress.

Operator workload has traditionally been defined with two components: physical

workload and cognitive workload [28]. Physical workload, defined as the energy expended

(e.g. in calories) by the operator while performing the task, is not very relevant to this thesis.

However, cognitive workload, defined as cognitive actions performed, is relevant. Various

factors contribute to mental workload: task complexity, number of robots assigned to the

operator, operating environment etc. [12]. Increase in task complexity, increase in number

of robots, change in the operating environment, or even an operator’s personal issues may

all increase the operator’s cognitive workload. In this thesis, cognitive workload is directly

related to the number of agents that an operator must manage, a term we call operator

utilization [28].

Both physical and cognitive workload in the real world contribute to operator stress.

Stress increases directly proportional to workload [12], but as workload gets higher, stress

6
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Figure 2.1: Performance versus Stress

increases faster. Studies have shown that humans perform poorly given little or too much

workload/stress [19]. The performance versus stress curve looks like the inverted-U shape in

Figure 2.1.

2.1.4 Awareness and Performance

In addition to mental workload, situation awareness is another factor that contributes to

operator performance [34]. Loosely speaking, situation awareness means how much the

operator knows about the current state of the world. More formally, situation awareness has

been defined as follows: “The perception of elements in the environment within a volume of

time and space, the comprehension of their meaning, and the projection of their status in the

near future” [12].

Situation awarenss consists of various elements: information about the status of the

robot, information about the robot’s environment, and information about the tasks in the

environment [34]. A great hindrance to situation awareness is the robot’s field of view.

Humans have a great peripheral vision while a robot’s field of vision is rather small and

7
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is limited by its camera. Woods et al. made a comparison between operating a remote

robot and driving while looking through a ’soda straw’ because of the small field of view [32].

Human eyes have about 180 degrees peripheral vision, however peripheral vision is not used

for detail finding, but to detect motion and avoid obstacles. Using a wide angle camera may

increase the field of view on the robot, but to represent the wider field of view on a flat screen

will cause loss of details, images will be distorted on the outside, which are often critical

in the missions that use robots, such as search and rescue. However some robots have IR

sensors on the side to compensate for the peripheral vision of humans to detect and avoid

obstacles, but the cognitive workload of the operator is increased by having to switch back

and forth between the camera view and peripheral view.

Woods et al. have also mentioned the issue of remote perception, which they defined

as the ability to integrage partial views from a set of robotic resources into a coherent model

of the environment for remote human observers [32].

Casper and Murphy [4] also mentioned this difficulty of remote vision in robot-assisted

urban search and rescue response at the World Trade Center. Different kinds of robots

mounted with cameras were used, with their field of view ranging from 52 degrees to 118

degrees, as opposed to a single human eye’s field of view - 95 degrees out, 75 degrees down,

60 degrees in and 60 degrees up. Operators had to use a single color camera to determine

the location and status of the robot, search for victims and inspect the environment. This

lack of and difficulty in obtaining situation awareness had caused the operators increased

cognitive stress [4].

On the contrary, if the operator is more aware of the environmental situation, the

cognitive workload on the operator will be reduced, which in turn will decrease stress. Various

methods to increase awareness of operators include using different color representations [11],

designing ecological interfaces [23], etc. However, an operator’s situation awareness is

restricted by limited attention and working memory capacity, and is largely affected by

8
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the operator’s goal and expectations which will influence how attention is directed, how

information is perceived and how it is interpreted [12].

2.1.5 Specialization

The idea of “specialization” is analogous to that of assembly lines, where each worker/operator

is in charge of one type of task/robot. Jonathan Whetten [30] did experiments on how well

operators perform when they are assigned a particular type of robot (specialized operators),

against how operators perform when they are assigned heterogeneous robots (unspecialized

operators). The experiment consisted of a simulation environment where human operators

had the tasks of finding mines and bombs.

Results show that specialization of operators controlling teams of heterogeneous robots

reduces workload for the operators, which frees up “spare capacity”; that spare capacity

could be utilized to improve task performance within a proper environment.

2.2 Robot Autonomy and Fan-out

Although robots have autonomous abilities, human operators are an irreplacable factor in

robot automation for the technologies today. However, more autonomous robots enable

a human operator to control multiple robots at once, and the number of robots a human

operator can control is modeled using the so-called ’‘fan-out”. Fan-out is a representive or

measure of how many simple homogeneous robots a human can manage and is calculated

based on two parameters: how much time a robot needs from a human operator (interaction

time), and how long it can operate on its own without human input (neglect time) [26]. The

less time a robot requires from humans, the more homogeneous robots can be controlled.

Fan-out is given by the equation [25]:

FO =
NT

IT
+ 1 (2.1)

9
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.

2.2.1 Interaction Time

Interaction Time (IT) is defined as the period of interaction by an operator with the robot [26];

it directly depends on how much attention a robot demands from the operator. IT is one

of the two parameters that influence fan-out, and factors such as time to gain situation

awareness, time taken to switch between tasks, time used for planning, etc. all contribute to

interaction time [18].

In order to increase fan-out, one of the ways is to decrease interaction time. IT can

be divided into two main categories: time taken to actually interact with the robot, giving

commands and receiving information through interfaces (robot-based IT), and the time spent

to gain situation awareness, formulate plan and make decisions (operator-based IT).

As mentioned in the previous section, situation awareness is one of the factors that

contritube to operator performance. It is directly related to plan formulation and decision

making. A higher level of SA will decrease the cognitive workload of the operator and time

to react in case of unanticipated events, which in turn increases fan-out [34]. To increase

operator situation awareness and decrease the time to gain it, a good interface designed will

provide the operator with necessary information required for higher situation awareness [23].

2.2.2 Neglect Time

Another way to increase fan-out is to increase neglect time. Neglect time describes how

long a robot can operate on its own without external intervention, or in this case, human

interaction [18]. Intuitively, the longer the NT, the less a robot needs interaction from

humans, and according to Equation 2.1, a longer NT will increase fan-out.

However, although a higher NT and a lower IT increase fan-out, the performance of a

robot improves the longer an operator interacts, that is, performance grows with IT [28][5].

Conversely, performance deteriorates with time (NT) until the next interaction [28].
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2.2.3 Robot Attention Demand

When an operator is interacting with a robot (IT), the robot is demanding and consuming

time and attention from the operator, which contributes to the operator’s stress level. Robot

Attention Demand (RAD) describes how much attention a robot demands from the operator.

In other words, this is a measure of the fraction of total task time that a user must attend to

a given robot [25]. We make the simplifying assumption that RAD=IT in this thesis; this

assumes that the robot will never require maintenance, will never get stuck, and will never

bug out, which would have extra RAD than just the interaction time.

2.3 Team Performance Parameters

While some tasks can be accomplished by a single operator and a team of robots, some

tasks need two or more operators cooperating with one another in order to be accomplished.

Thus it is important to study parameters that would impact team performance. Prior work

on organizing efficient teams includes (a) maximizing fan-out, which describes fundamental

limitations on the number of robots that a single human can manage given assumptions

about the robots and the tasks being performed; (b) managing the level of autonomy (LOA),

which describes how operators delegate work for a robot to do on its own; (c) identifying team

structures, which includes mechanistic and organic structures defined by [22] and (d) describing

specialization [30], which describes the effect of operator specializing in particular types of

tasks. This thesis identifies several parameters that affect the efficiency of a team, such as

the effect of communication, level of autonomy, fan-out, team topologies and specialization.

This subsection talks about some of these parameters.

2.3.1 Single Human, Single Robot

A team consists of at least two members, so a single human and a single robot make a

team. Robots can be categorized not only by the types of tasks they do, but also by how

autonomous they are (LOA). Sheridan and Verplank [27] have categorized autonomy in ten
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levels (Table 1), level one being completely manual, level ten being completely autonomous,

and with different degrees of automation in between:

Table 2.1: Levels of Automation
Automation
Level

Automation Description

1 The computer offers no assistance: human must take all decision and actions.

2 The computer offers a complete set of decision/action alternatives, or

3 The computer narrows the selection down to a few, or

4 The computer suggests one alternative, and

5 The computer executes that suggestion if the human approves, or

6 The computer allows the human a restricted time to veto before automatic execution, or

7 The computer executes automatically, then necessarily informs humans, and

8 The computer informs the human only if asked, or

9 The computer informs the human only if it, the computer, decides to.

10 The computer decides everything and acts autonomously, ignoring the human.

At lower levels, each robot requires a lot, if not complete attention from the human

operator. This results in fewer robots being controllable by an operator. When moving up

the automation level, each robot requires less attention from human operators suggesting, by

equation 2.1, that more robots can be controlled by an operator.

2.3.2 Multi-Operator Communication

While a lot of tasks could be completed by a single operator controlling one or more robots,

some tasks would require multiple operators to coorperate, such as searching through the

debris of a collapsed building to search to survivors that are stuck. Operators then will need

to communicate and understand what everyone on the team is doing to effectively coordinate

and divide the tasks. Communication allows operators that are geographically dispersed

to be informed about the environment and actions by other operators. When done in an

organized manner, communication can improve performance of the operators by increasing

their situation awareness. Operators can communicate through voice, chat, or both. Voice is

fast, but could be problematic when the number of operators increases and if multiple voice

messages could be transmitted simultaneously. Hence voice communication is usually serial
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[22]. Chat allows simultaneous message passing, and the fact that chat is free of background

noise, volume effects or operator accents makes it a much clearer communication method [22].

2.3.3 Mechanistic vs. Organic Structures

Another category of team performance criteria is the structure of teams. How well teams

are organized could have a huge impact on performance, even the success of tasks. Team

structure could play an important role in satisfactory task completion. The types of team

structures that have been studied the most are mechanistic and organic teams.

A mechanistic team is one where the operators have rigidly defined roles and responsi-

bilities [22]. For instance, an operator is assigned one type of robot, then that operator has

the full reponsibility of controlling robots of that type. If there is a set of robot types and

each operator is assigned one robot of each type, then the team structure would be considered

organic since any operator can perform the tasks that arise, if he/she has an appropriate

robot available for that task [22].

Studies have shown that mechanistic teams perform better than organic teams overall,

but perform poorly when the task inter-arrival is erratic instead of constant. This is because

erratic inter-arrival times cause events/tasks to arrive in batches, thus increasing the queues

[22]. However, organic teams showed no significant difference whether the inter-arrival rate is

constant or erratic, and this suggests that organic teams are more robust to environment

uncertainties than mechanistic teams, and are able to handle workload spikes well [22]. More

work needs to be done to understand different types of organizations.

2.3.4 Human Supervisory Control

Supervisory control is somewhat the middle ground between control and computation. Control

is done on a higher level after computation is done by computers. “In highly automated

systems, such as Tomahawk and Patriot missiles, operators are rarely in direct control of

systems, but are more involved in higher level planning and decision making. This shift from
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low level skill-based interaction with the agents to higher level knowledge-based interactions

is called a Human Supervisory Control” [7], which makes it possible for a single operator

to control multiple robots. Supervisory control is relevant to human robot teams because it

specifies the framework on how humans should efficiently interact with robots, that is, higher

planning rather than low level mechanical operations.

2.4 Agent-based Simulation

Agent-based simulation, also called agent-based modeling (ABM), is a powerful simulation

technique that has been used in various applications. In agent based modeling, a system is

modeled as a collection of individual entities called agents [3], each given a set of simple rules;

complex group behaviors can emerge from local interactions.

Since we live in a complex world, the systems that we simulate have inherent com-

plexities that occur because behavior emerges from decentralized decision-making. ABM has

been a powerful tool in simulating the actions and interactions of autonomous agents (both

individual or collective entities such as organizations or groups) in order to observe their

impact on the system or group as a whole.

An agent-based simulation is an abstract description of an environment or the world,

the tasks in this world, and how these tasks are completed by agents given a set of decision

rules.

An agent in agent-based simulation is an actuator in the environment that can

accomplish a set of tasks.

Tasks could be anything that agents or robots do in the real world.

Agents are organized into a team, defined by the topology describing the relationships

agents have with each other, including how they communicate and interact.

Agent-based simulation is chosen for modelling human robot teams because it can

explicitly represent the environment and the agents in it. The environment in the agent-based

simulation could be any work environment in the real world, such as warehouse with boxes,
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a forest, etc. The tasks in the agent-based simulation are the objectives of agents in the

environment, such as lifting and organizing heavy boxes, wilderness search and rescue, etc.

The remainder of this thesis presents modeling and simulation results that explore

how multiple operators can efficiently manage a team of robots and comparisons of different

results.
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Chapter 3

Methods

In the thesis statement, we have claimed that:

• Agent-based simulations can be used to discover parameters that have strong influences

on the performance of multi-operator/multi-robot teams.

• Organizations that properly respect these parameters produce teams that perform

better than teams that myopically focus on maximizing fan-out.

To verify these two claims, we want to make teams of agents more effective by finding

the factors that influence team performance the most. We will use agent-based simulation to

do this. In this thesis we want to discover a simple set of assumptions that tell us about how

the human robot team works. We will focus on the following three questions:

• How much (many) workload (agents) can an operator handle, and what are the

parameters that affect this number?

• In an agent-based simulation, what parameters determine when is it possible for two

humans to perform more than twice as well as a single human?

• When can organizations that support specialization free up ”spare capacity” and thus

improve team performance?
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3.1 What is in the Agent-Based Simulation?

This section lists what needs to go in the simulation to model human-robot teams. The terms

included here are not only frequently used in literatures and in the remainder of this thesis,

but also formalized and defined enough to put into the model.

3.1.1 Agent

An agent is an individual autonomous entity in an agent-based simulation. When using

agent-based simulation of human-robot teams (HRT), an agent is a semi-autonomous robot

managed by one or more agent operators. Agents are the most fundamental component in a

team and especially in an agent-based simulation because agents complete tasks. This means

that performance is measured as how much work the agents get done.

In our simulation, since it is an abtract environment, we have an infinite number of

agents of each particular type that can be assigned to operators. Theoretically, operators in

the simulations can be assigned as many agents as we want; in practice, the number of agents

assigned to each operator is constrained by how much attention an agent demands from the

operator. The amount of attention depends on an agent’s Level of Autonomy, described next.

3.1.2 Level of Autonomy

Level of Autonomy (LOA) describes how long a robot can work without human interaction.

Consequently, LOA determines how much work the robot can do, and how many robots can

be assigned to an operator.

An ideal agent would have a high LOA, that is, require very little human interaction,

and would do a lot of work on its own and producing high pay-off. In practice, although agents

that have high LOA require less human attention, they often have lower performance than

agents with low LOA [5] due to lack of human interaction and supervision/real-time evaluation.

Agents that have low LOA may require more time from the operator (teleoperation), but

they may also be able to achieve a higher pay-off during interaction time due to more human
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Figure 3.1: Impact of neglect time [5]

interaction. Unfortunately, teleoperated agents and other agents with low LOA often have

performance that degrades very quickly during intervals of operator neglect. Crandall et

al. [5] studied the effect of neglect and interaction time, and results are presented abstractly

in Figure 3.1 and Figure 3.2 for three generic levels of autonomy: teleoperation (low LOA),

point-to-point (moderate LOA), and autonomous (high LOA).

3.1.3 Fan-out

Fan-out is the maximum number of homogeneous robots an operator can theoretically control

given the agents’ NT, IT and LOA. It represents the possible maximum workload of operators

and is given by [18, 25, 26]:

FO =
NT

IT
+ 1 (3.1)

Fan-out is an upper bound of the number of independent homogeneous robots a single

human can control [5].
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Figure 3.2: Effectiveness of Different LOAs [5]

3.1.4 Cost and Budget

Each robot has a RAD (Robot Attention Demand), modelled as “cost” derived from IT.

Budget is an operator’s capacity to control a number of agents. When a robot is assigned to

an operator, the operator’s budget is deducted by that robot’s cost. The operator’s attention,

time and effort are abstracted into a single numeric value, which is consumed by robots

according to each robots’s demand on the operator. In a real world context, in order to

interact with a robot, an operator has to spend time, give attention to the agent in IT, and

exert effort; this is modeled by the reduction of operator’s budget for each robot assigned.

Cost and budget are important because a higher budget means the operator can control more

robots.
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Figure 3.3: Relationship between NT and IT of operator on a robot

3.1.5 Slack

Operator slack is how much free time an operator has. In other words, it is the percentage

of operator budget that is not fully utilized. When an operator is spending his or her fully

utilized budget, he or she will do the works faithfully and get no break. However, during

slack time, many things can be done or happen; it is up to the operator to do whatever is

desired, taking a rest to recuperate, or doing various other tasks.

3.2 Modeling Assumptions

From the previous section, LOA, NT, IT, slack, cost and budget are the parameters that

determine how a human operator can use his or her time to promote high HRT performance.

To perform effective agent-based simulation, it is useful to reduce the number of

parameters.One way to reduce the number of parameters is to note that LOA is associated

with a pair of variables: (NT,IT). Thus, we can reduce the number of parameters for LOA

by compressing the two-dimensional (NT,IT) space to a single dimensional parameter space.

Figure 3.3 shows how we model the relationship between NT and IT as inversely

proportional; that is, when NT increases, IT decreases and vice versa. The inversely

proportional relationship between IT and NT can be formalized as:
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NT = 1 − IT (3.2)

This model treats NT and IT as percentages of total budget. For example, when a human

interacts with a robot for 10 hours in such a way that interaction begins at the first hour and

neglect begins at the second hour and continues to the end, then NT=0.9 and IT=0.1.

Since both NT and IT are percentages, they add up to 1. With this assumption, NT

and IT could be combined into a single parameter used to model LOA and budget could be

eliminated. Hence LOA is defined to be the percentage of time the robot can operate on its

own, and is given by the following equation:

LOA =
NT

NT + IT
=

NT

1
= NT (3.3)

Equation 3.3 equates robot autonomy with how much work it could do on its own

without human interaction. If a robot could operate on its own 90% of the time, it has an

autonomy level of 90%. In the real world, we often consider a robot to be more autonomous

if it requires less time from the human operator and can do more work on its own; the same

concept is modeled in the assumption here.

Equation 3.1 represents the relationship between fan-out, NT, and IT. Under the

assumption given in equation 3.3, the relationship between fan-out and NT is shown in

Figure 3.4. Simply put, fan-out grows with increasing LOA.

3.3 Estimating Performance

An agent’s performance (output) and its cost (IT) are generally a function of its LOA. During

interaction time, the agent is consuming time, effort and resources from the operator, causing

its performance to increase (Figure 3.5). At the end of IT, the operator stops interacting

with the agent, either to take a break or to interact with other agents. During the subsequent

neglect, the agent’s performance level will start to decrease, until it hits a minimum acceptable
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Figure 3.4: Relationship between LOA and Fan-out

performance threshold (end of NT). At that time, the operator must interact with the same

agent again to boost its performance. Since how exactly performance decreases during NT

has not been explicitly parameterized in the literature and it does not really impact the

results, linear decay is assumed; also linear is the most simple approximation of measured

decay.

Without loss of generality, the minimum acceptable performance threshold is set to

zero. Each individual agent’s performance is the area under the graph depicted in Figure 3.5,

computed using a Riemann sum [29]. Subsequently, team performance is the sum of each

individual agent’s performance.

3.3.1 Operator Load & Performance Measurement

The first question we want to answer in this thesis is how much load an operator can handle,

that is, how much utilization. To do this, we will estimate the operator’s performance at 50%

utilization, then slowly increase the operator load (utilization) and measure the respective

performance of the team given different utilizations. In our simulation, controlling more
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Figure 3.5: Representation of Neglect and Interact Time

agents would seem to yield a higher team performance, but it also increases workload on

the operator. From Kavanagh’s work [19], predictions are that performance will increase as

utilization increases, but will eventually peak out and drop if there is further increase in load.

One way that workload negatively impacts operator performance is discussed in the next

section.

3.3.2 Operator Load & Operator Stress

Casper [4] demonstrated that humans tend to make more mistakes when stressed. To model

this, an implicit parameter called the “mishandling” probability is used and is calculated as:

mishandling =


0 if utilization ≤ 50%

(utilization− 50%)2 otherwise
(3.4)

This equation is used because we try to emulate the human performance and stress

curve as much as possible (Figure 2.1). Due to the high cost and the critical nature of

missions, the lower end of the U curve is ignored, assuming motivation is not a problem in

this scenario. From Equation 3.4, note how mishandling probability increases with increasing

utilization as shown in Figure 3.6.
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Figure 3.6: Relationship between utilization and mishandling

If an operator mishandles, the performance of the agent in IT will not be added to

the team performance, instead, it is “wasted” due to mishandling. In reality, this wasted

work may even hinder further progress of the team, which is a negative impact. But since

this is totally stochastic and would require more complex modeling, we make the simplifying

assumption that a mishandled robot will simply not contribute anything to the team during

the mishandled period.

3.4 Multi-Operator Performance

When the operator is overloaded, increasing load will actually decrease the operator’s

performance with the team. This leads to the interesting question of what can be done to

keep performance up? In the model in this thesis, when the load of a single operator is over

the “threshold” where performance starts to drop, we introduce a second operator to share

the load with the first operator, and performance is estimated and compared to that of a

single operator (question 2).
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Figure 3.7: How Communication takes up operator budget.

3.4.1 Communication

In real life, an essential component of an effective team is communication [13]. Operators

need to communicate with each other, pass information along and sometimes even make

collective decisions. Lack of communication may cause redundant work to be done by different

operators, or may even cause an operator to undo the work of another operator. For example,

in a search and rescue scenario, two independent and non-communicating operators may

control different UAVs to scan through an area for the missing person. However, due to lack

of communication, some areas that they each covered may have overlapped, which could be a

waste of time and resource.

In human-robot teams, the two primary means of communication are voice and

text [22]. Each of them has its pros and cons. For example, voice communication is fast and

easy, but it is prone to channel noise, background noise, operator accent, etc.; whereas text

communication does not have the drawback voice communication has, but it is slow and

requires that an operator’s visual focus be away from the agents being controlled.

Although detailed comparison of different communcation media is beyond the scope

of this thesis, we are nevertheless interested in how communication can help improve team

performance. On the downside, communication is modeled in the simulation as a cost on an

operator’s budget and time (Figure 3.7). On the positive side, we model communication as a
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multiplier to the team’s performance as a percentage in order to simulate team coordination

and the ease of tasks due to division of work. Since lack of communication could cause team

incoherency, intuitively we would decrease team performance inversely proportional to the

amount of communication the operators have; however the optimal amount of communication

is unknown. There could also be a point at which adequate communication could even

increase team performance. So, instead of reducing performance according to how much

communication there is, communication overhead will act as a multiplier to increase both

operators’ team performance. For example, if the communication between the operators cost

20% of the operators’ total budgets, the team’s performance will be multiplied by 120%. This

is explained more in detail in the next chapter.

There are two types of communication paradigms modeled in the simulation, the peer

paradigm and commander paradigm.

Peer

In the peer paradigm, operators are of equal importance and have equal amounts of responsi-

bilities. This means that although they might not control the same type or amount of robots,

they spend the same amount of time communicating with one another. In the end, the team

performance is increased according to the amount of communication between the operators.

Commander

In the commander paradigm, one operator acts as a “commander” and makes most of the

decisions. The commander will have a higher communication cost, which means it controls

fewer agents. The other operators act as “subordinates”, and consequently they spend

less time communicating, because most of their communication is simply reporting to the

commander and following orders. In the end, the team performance is multiplied by the

communication time spent by the commander.
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3.4.2 Specialization

Multiple operators with heterogeneous agents can control the agents in two different ways.

One is that each operator can and will control more than one type of agent, and the second

way is that each operator controls (specializes) in controlling one particular type of agent.

Jonathan Whetten stated that specialization will improve operator performance by “freeing

up spare capacities” [30]. We evaluate this claim by introducing multiple types of agents with

different LOAs, assign a particular type of robot to each of the two operators (specialization),

then assign a mixture of agents to both the operators (non-specialization). When an operator

switches from one type of agent to another, there is a “switching cost”, because in real life,

when a person switches from one task to another, there is usually an “adjusting” period; this

switching cost is to simulate the adjusting period. The switching cost works like this: an

agent’s performance still increases during IT, but when the operator switches over from a

different type of agent, the agent in IT will still increase its performance, but at a lower rate

(Figure 3.8).
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Figure 3.8: How Switching Cost affects performance.
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Chapter 4

Simulations and Analysis

An agent based model simulation is coded in Visual Studio 2008, with the parameters

and specifications in the previous chapter incorporated into it. Various experiments are set

up and conducted to analyze, contradict or confirm the following hypotheses:

H1: maximizing fan-out will not produce the best team performance;

H2: adequate communication improves performance;

H3: specialization helps teams to perform better by freeing up spare capacities.

Figure 4.1: Initiailizing agents.
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Figure 4.2: Initializing operators.

The simulation code is organized into different classes: GUI, agent, manager (operator),

globals and main. The experimenter can intialize any number of agents of any type by

specifying the LOA and agent type, as well as indicating that this type of agent is “active”

by checking the checkbox for the agent (Figure 4.1). The experimenter then can select an

operator/operators to be “active”, and assign the agents to the operator(s), together with

the amount of budget available and communication overhead of each operator (Figure 4.2).

Lastly, the experimenter will set other parameters such as the lazy factor and the number of

iterations for the simulation to run. Note that parameters such as mishandling, slack are

calculated implicitly according to the load the experimenter assigns to the operator. In the

rest of this chapter we will discuss these parameters (Table 4.1) in detail and the results

obtained through the simulation.
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Table 4.1: Parameters used in measuring optimal operator load
Parameter Description

Agent Type The type of agent. Different types of agents can have different function-
alities, such as Air Vehicle, Ground Vehicle and Underwater Vehicle.

LOA How autonomous an agent is.

NT Neglect time, determined by LOA.

IT Interaction time, determined by LOA.

Budget The amount of budget units an operator has, this includes time and
effort.

Mandatory Budget The amount of budget units an operator must spend on interacting with
agents, there is no rest in this period.

Slack The amount of (free) time an operator has, is a percentage of the opera-
tor’s total budget that is not mandatory budget.

Lazy Factor How lazy the operator is to work during slack time. This is a probability.

Mishandling How likely an operator is to make mistakes. This is also a probability
and is calculated based on how much of the operator’s total budget is
used as mandatory budget.

Communication Overhead How much time operators take out from controlling agents to communi-
cate with each other.

Iterations How many iterations the simuation will run. Each iteration ends when
the operator has fully expended his/her budget.

4.1 How Much Workload Can an Operator Handle?

The first of the three questions in the beginning of chapter 3 we will answer in this thesis

is how much workload an operator can handle. In this experiment, agents of LOA 0.95 are

used to simulate highly autonomous robots and this is kept constant. Operator slack and

lazy factors are adjusted to produce various results.

4.1.1 Individual Agents

Assume that the operator does not make any mistakes and is controlling the maximum

number of homogeneous agents given by fan-out. Each agent’s performance looks like what is

given in figure 4.3. The maximum performance of an agent is set arbitrarily at 250 units. On

the right side of figure 4.3, it shows the shape of the performance curve clearer after zooming

in. As shown, the agent’s performance increases during IT and decreases during NT as stated
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Figure 4.3: The performance curve of an individual agent controlled by an operator without
any slack

before, and this cycle continues on without any chance of the agent reaching its maximum

potential.

Figure 4.4: The performance curve of an individual agent controlled by an operator with
50% slack and lazy factor = 0.8

However, if the operator is given some slack (for example, 50%), and is willing to take,

let’s say, only 20% (lazy factor = 0.8) of the effort to continue working on the agent with

the lowest performance during slack time, the agents can slowly increase their maximum

performance over time. This is because the agent with the lowest performance will receive

interactions early, before the end of its neglect time, causing its performance to climb. Thus

the agent’s performance gets a boost before it reaches the minimum threshold (where it was

at the beginning of IT). Figure 4.4 illustrates this phenomenon.
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Figure 4.5: Comparison of team performance when the operators are completely lazy during
slack (lazy factor =1)

4.1.2 Team of Agents

We consider a team of two operators, and run simulations with different operator loads

ranging from 50% to 100%, with increments of 5%. As shown in figure 4.5, simply giving

some slack and without being required to do extra work during that time, operators produce

a higher performance with the team of agents when there is moderate slack time (about 20%

to 30%).

The left of Figure 4.5 shows the comparison of team performance when the operators

are completely lazy during slack period (except for 100% load when there is no slack, hence

cannot be lazy), and operators make mistakes (mishandles) completely based on the amount

of workload they have; that is, operators do not make mistakes when their workload is below

50%, which is a quite optimistic speculation. As shown, given these assumptions, operators

have the highest performance at about 75% workload.

The right of Figure 4.5 shows the same set up as the left except that operators have a

“leniency” of making mistakes by themselves while not being overloaded; we call this leniency

the “base mishandling” probability, therefore Equation 3.4 becomes:

33



www.manaraa.com

mishandling =


basemishandling + 0 if utilization ≤ 50%

basemishandling + (utilization− 50%)2 otherwise
(4.1)

10% is the number used for this base mishandling probability, which is a quite

reasonable estimate and is more likely to happen in the real world than “perfect” operators.

As shown in Figure 4.5, operators have the performance peak at 70% workload. For the rest

of this thesis, we will use 10% as the base mishandling probability, due to human imperfection

and how operators can make mistakes regardless of outside influence.

Now, if the operators are willing to continue interacting and working with the agents

during slack time with a probability (1 - lazy factor), there will be an even more delicate

relationship between operator load and team performance. This is because controlling more

agents may add more members and work to the team, but it also means that there will be

more mistakes made by the operator. Thus, the operator will have less slack time hence less

time to further interact with agents outside IT to boost performance, and of course, this will

make the agents’ performance curves look more like the ones in Figure 4.3 which yields a

lower performance than that of Figure 4.4.

Since each operator is unique as an individual, there is no explicit way of generalizing

the laziness of all operators during slack time and how they will behave. So we will not do

extensive experiments with different combinations of slack and lazy factors; instead, we will

show the effects of different lazy factors on team performance and the trade off between the

number of agents and performance gain.

In each set-up in Figure 4.6, the operator has 70% load, but with varying lazy factors.

As shown, lazy factor influences the speed at which agents increase their performance during

iterations until agents have reached their maximum performance (performance plateaus).

With a higher lazy factor, agents will have a steeper increase in performance if the performance

gain is greater than the performance loss due to operator mishandling; if not, there will not

34



www.manaraa.com

Figure 4.6: Comparison of team performance of the same operator with different lazy factors.

be performance gain during NT. If the operator has a lower lazy factor, that is, the operator

is more willing to work with agents during slack time, the performance gain of agents will

increase faster. Theoretically, a lazy factor of 0 will be the best, but it is not ideal. A zero

lazy factor means that the operator does not get any rest, even during slack time; however

willing the operator may be to work, under exhaustion and fatigue poor performance may

result [4]. Since each operator is unique, this result aims to provide a better understanding of

how activities during slack can increase performance, and not to find a universal lazy factor

for all operators to produce the optimal output.

In Figure 4.7, we show the trade off between the number of agents (or load) and

performance. A lazy factor of 0.5 is used. As shown, with more agents assigned to an operator,

it takes longer for agents to increase their performance and reach their maximum potential.

And also, intuitively, more agents mean less slack time, which means more mishandling by

the operator, and that in turn requires a lower lazy factor in order for the performance gain

to overcome the performance loss due to mishandling. Speculations are that, even if long
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Figure 4.7: Comparison of team performance with operator lazy factor = 0.5 and different
loads.

term performance is desired (slow increase but higher output after a long period of time), if

the lazy factor required to overcome the performance loss due to mishandling is higher than

the operator’s maximum acceptable lazy factor, we will have an under-achieving team.

4.2 When Is 2 > 1+1?

In the previous section we have established that when given moderate slack (20% to 30%),

operators can perform the best. This introduces our next question, when can two operators

be more than twice as effective as a single operator? In this section, the same agents of LOA

0.95 are used, and all of the operators are completely lazy. Fixed workload is either carried

out by a single operator or divided between two operators.

Our argument is this: since the operator obtains maximum performance at 70%-80%

load, when the operator is over that threshold (overloaded), the best way to boost performance

and efficiency is to bring in another operator. As shown in figure 4.8, the performance of

36



www.manaraa.com

Figure 4.8: Comparison of team performance of a single operator at 90% load and two
operators sharing the same load (operators are completely lazy during slack).

the two operators sharing the same load (90%) is roughly twice the performance of a single

operator at 90% load. But this is under the assumption that operators are completely lazy

during slack, that is, they do not interact with the agents at all during slack. However, as

shown in the previous section, even given a little enthusiasm, the operators can boost the

performance of the team during slack time. So here is the reason for our argument: two

operators sharing the same load as an overloaded operator will have significantly more slack,

thus during their respective slack time, the duo will gain a larger performance boost for the

team if the operators interact with the agents during slack time.

Figure 4.9 shows the result from a simulation designed to test this hypothesis. The

experiment consisted of two scenarios: an operator is assigned 90% workload, and two

operators are sharing the same load, i.e., 45% workload each. Figure 4.9 shows the comparison

of performance of an agent controlled by the single operator at 90% load and an agent

controlled by one of the two operators sharing the same load. As shown, excessive mishandling
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Figure 4.9: Comparison of single agent performance under a single operator at 90% load and
two operators sharing the same load (operators are lazy 90% of the time during slack).

caused by high workload and lack of slack hinders agent performance growth even when the

operator is not completely lazy during slack; whereas the two operators sharing the load no

longer have constant performance with the team of agents, because they have the capacity to

increase agent performance over time due to increased slack time and reduced mishandling

probability. Again, when operators have a little enthusiasm during slack (90% laziness as

opposed to completely lazy), performance of the two operators sharing the same load as the

single operator proved to be superior. This is because reduced load contributes to reduced

mishandling of the operators, and as mentioned previously, will give the operators more slack

time to further interact and boost the performance of the agents, as shown in Figure 4.10.

So far the operators are completely independent of each other. In practice, a team of

operators will require communication, and managing this communication will impact team

performance. Since the amount of communication required depends on the relative roles of the

operators, we explore two operator organizations: peer to peer and commander-subordinate.
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Figure 4.10: Comparison of team performance under a single operator at 90% load and
two operators sharing the same load (operators are lazy 90% of the time during slack) over
iterations.

Figure 4.11: Peer to peer topology. Large ovals represent operators and small circles represent
agents.
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Figure 4.12: Commander topology. Large ovals represent commanders, small circles represent
agents.

4.3 Communication and How It Can Help

In this section, agents with LOA 0.95 are used, operators are completely lazy during slack, and

the amount of slack time for each operator is kept constant at 30%. Communication overhead

is adjusted, and is accomodated by increasing/reducing the amount of workload for the

operators since each operator has a fixed slack time. We will discuss the different topologies:

peer to peer (Figure 4.11) and commander (Figure 4.12) and discuss the experiment results.

4.3.1 Peer to Peer

We will use the same agents and parameters used in previous simulations (70% load and

completely lazy operators during slack), but this time we will have another parameter that is

uniform for both operators, which is called “communication overhead”. This communication

overhead is similar to an agent, in the sense that it takes up operator budget (Figure 4.15);

however, it does not do any tasks and does not contribute to the summation of individual
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Figure 4.13: How team performance maybe affected by communication in real life.

Figure 4.14: How team performance maybe affected by communication in the experiments.
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Figure 4.15: How communication overhead is represented in the simulation

agents performance. Since lack of communication could cause team incoherency, intuitively

we would expect a decrease in team performance inversely proportional to the communication

overhead the operators have (Figure 4.13). But the optimal amount of communication is

unknown, and there could be a point at which the benefits of communication outweigh

communication overhead producing an increase in team performance, so instead of reducing

performance according to how much communication there is, communication overhead will

act as a multiplier to increase both operators’ teams’ performance (Figure 4.14). We are

interested in finding that “sweet” spot(s) with the highest team performance.

As shown in figure 4.16, the performance of two non-communcating operators and two

operators communcating 10% of the time are approximately the same. However, operators

controlled fewer agents when they communicated more. This means that at 10% commu-

nication, operators can control fewer agents to produce similar performance output as two

non-communicating operators. Not only will this save on operation cost, controlling fewer

agents may also reduce the mistakes that operators make.

Now we will move on to three operators. Similar to the two operator set up, three

operators also had uniform communcation, and team performance is also increased according

to how much communication there is. Figure 4.17 shows the result from our simulations. As

shown, for three operators, communication among the operators does not actually help the

team, instead, performance is in fact lower than that of non-communicating operators. In real
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Figure 4.16: Comparison of team performance of two operators with different amount of
communication.

Figure 4.17: Comparison of team performance of three operators with different amount of
communication.
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life, this could result from various reasons, such as social loafing, difficulty in coordination,

etc [20].

In the traditional Chinese culture, there is a parable. A monk lived in a temple on

the top of a mountain. The only source of water was a well at the foot of the mountain.

Everyday the monk would go down the mountain and haul two buckets of water for himself.

Another monk moved in, so he tried to share the load with the new monk using a carry pole

to carry one bucket of water in the middle. A third monk moved in, and all three of them

refused to go get water since the carry pole can only be used by one or two persons; everyone

wanted to do less and enjoy the work done by others.

As portrayed by the parable, peer to peer communication does not seem to work well

when there are 3 operators. So is there a way communcation can help? This brings us to the

next communication paradigm, commander.

4.3.2 Commander

Think of a manager in a large sized store, like Walmart. The manager does not collect cash

at the counter, does not clean the floor, nor does he or she do any of the tasks that the

store has other people for. Instead, what the manager does is just to manage the employees.

Without the manager, each employee is completely independent and unaware of anything

except for the task assigned to him or her, like a cashier would not notice that the store is

running out of milk. However, a manager can effectively combine the efforts of the employees

and make the entire store function as a whole, and how much time and effort the manager

puts in is directly proportional to how well the store runs.

In the commander paradigm, one operator acts as the “store manager” and gives

orders to his “subordinates”. The commander will have a high communication overhead

since he has to gather information from other operators and formulate strategy, then relay

information to each operator. Due to the ease of coordination with only one operator making

executive decisions, we let the performance bonus gained by the team equal to the amount
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Figure 4.18: Team performance vs different amount of commander’s communication. Per-
centages shown are the commander’s communication.

of communication overhead the commander has. For example, if the commander has a

communication overhead of 40%, the team performance will increase by 40%. Since the

commander makes executive decisions and relays them to the other operators, the amount of

communication among the subordinates do not impact team performance in this set up, so

we will arbitarily set it to 10% to account for reporting and receiving instructions from the

commander; this is also the value that produced the highest team performance in the peer to

peer paradigm.

As shown in figure 4.18, at 10% commander communication it is just a peer to peer

paradigm since every operator spent the same amount of time communicating. As the

commander spends more time communicating, there are three performance peaks. The first

peak is at 30%, a second one 45% which is the global maximum, and the third at 60%. The

reason for these peaks is this: as the commander spends more time communicating, the

team gains more performance boost from the commander; but it also causes the commander
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to spend less time controlling agents hence fewer agents are controlled by the commander,

which means fewer agents are in the team. This delicate relationship between commander

communication and number of agents controlled produces different local peaks. But to

generalize, the highest performance occurs when the commander spends about 40% to

60% of his time communicating, of course, this includes gathering information, formulating

strategies and relaying orders. In real organizations, this performance maxima could mean

reduced mission time, less resources expended, or a reduced difficulty due to the commander’s

coordination.

Hence, when there are three operators, the commander paradigm produces better

team performance. As more operators are added to the team, anticipation is that this “sweet

spot” of 40% to 60% will shift more to the higher percentages, because a percentage gain in

team performance will eventually outweigh the performance contributed to the team by the

extra agents controlled by the commander if he spent less time communicating and ultimately,

at a certain point it may be better to have a dedicated commander, one who does not control

any agents at all but focuses on team coordination.

4.4 Specialization and How It Helps

To model specialization, we have introduced another parameter, called the “switch cost”.

Basically, switch cost comes into play when the operator switches from interacting with one

type of agent to interacting with a different type. In the real world, different types could

include an Unmanned Air Vehicle (UAV), Unmanned Ground Vehicle (UGV), Unmanned

Underwater Vehicle (UUV), or even robots of similar types but of different models/LOAs.

For homogeneous teams of robots, there is no switching cost involved because agent types are

the same, hence their functionalities and controls are still the same. For example, an operator

is assigned with two UAVs and a UGV; when the operator switches from interacting with one

UAV to the other, there is no switching cost because the two vehicles are the same type, they

are both flying and have the same LOA, which means they have the same control mechanisms.
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Figure 4.19: Switch cost reduces the performance gain rate of an agent during IT.

Figure 4.20: How performance could decrease during NT for agents under non-specialized
operators.
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Figure 4.21: Performance of specialized vs non-specialized teams.

However, when the operator has finished interacting with the UAVs and switches to the UGV

or vice versa, switching cost will reduce the efficiency with which the operator interacts with

the vehicle, in other words, agent performance will increase slower during IT. This is shown

in figure 4.19.

With switching cost, during NT the performance of the agents could either drop at the

same rate as agents without switching cost, even though the rate of performance increase has

decreased due to switch cost, or it could drop according to how much performance gain the

agent has had during IT (figure 4.20); we are not terribly concerned with how performance

decreases during NT here, because either way the performance of the agent with switch cost

will be lower than that of the agent without switch cost (smaller area under the curve). For

our purpose of modelling specialization its impact is negligible.

Now we extend this notion to the performance of a team. We will compare the

performance of a control group that consists of identical agents with an experimental group

that consists of different types of agents. In Figure 4.21, five agents with the same LOA are
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used. However, except for the specialization scenario, agents have different types. As shown in

the figure, team performance decreases continually when there is an increase in the diversity of

the agents, due to higher switch cost caused by more agent types. This is supported by John

Whetten’s study [30]. John Whetten claimed in his study that specialization helps operators

to “free up” their spare capacities by lowering their workload from managing heterogeneous

robots and hence increase their performance.
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Chapter 5

Conclusion

In this thesis we have evaluated human robot supervisory control through the use of

an agent-based model. Results show that:

• myopically maximizing fan-out does not necessarily optimize team performance; instead,

it can potentially decrease team performance by overloading the operator.

When assigning agents (load) to operators, it is better to leave some room for “slack” time.

During the slack time, further improvement of team performance is possible if the operator is

willing to continue interacting with the agents. This promotes the maximum efficiency of the

agents, the operator, and the team as a whole.

• adequate and yet moderate communication not only helps team members coordinate

their activities, it also has the potential to improve team performance by efficient

division of work.

When there are two operators, a peer to peer structure works just fine; it is simple to

understand, easy to implement, and it produces desirable team performance. However when

there are three operators, a peer to peer structure does not give superior performance than

individual operators. A sociological phenomenon that produces similar result to this is social

loafing. When there are three or more members in the group, one or more of them may

choose to slack off and do less work. However, the result of social loafing - reduced team

performance, may not just be because the team members are slacking off, it could also be

due to the fact that the team structure is simply not effective and is doomed to produce
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inferior performance. As shown in the results, when there are three or more operators, it is

better for the team to have a “commander”.

• specialization helps operators to produce higher performing teams by eliminating the

cost associated with managing heterogeneous robots, and thus frees up operators’ spare

capacity.

Similar to an assembly line, where each station has one task, when operators are

specialized in a particular type of robot, there is no cost when switching from a robot to

another of the same type. This ensures that no effort is wasted on adjusting and learning,

which is another way to increase team performance.

Ultimately, this thesis has shown that there is a great potential for changes in

organization and scheduling from current models, particularly current emphasis on models

that seek to maximize fan-out. These changes, if properly studied and implemented, will

bring human-robot interaction to a higher level with superior performance.

Limitations

This work assumes that the system is deterministic. In the agent-based model, the human

operators, agents, and environment do not have randomness that will affect team performance.

A sample of differences between the real world and the model are described in Table 5.1.

While randomness pervades real life, speculations are that even with randomness, the results

produced here will serve as a mean or average among many sets of results. Future work

should validate this and should explore emergent effects of randomness.

Future Work

Future work could explore deeper into:

• more team structures, such as a “net” structure when there are many operators, each

of them could also monitor his/her immediate neighbors;
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Table 5.1: Assumptions About the Non-randomness of Operators, Agents, and Environments
In the Real World In Our Simulation

Each human operator is unique. They have
different skill sets, different amounts of
motivation

Each operator has the same skill set and
equal amount of motivation due to the
critical nature of missions involing robots.

Human operators can get sick or have emo-
tional issues.

Human operators do not get sick nor have
emotional issues.

Robots require periodic mechnical mainte-
nance.

Robots do not require periodic mechanical
maintenance.

Robots break down. Robots do not break down.

Bad weather can interfere with mission. Weather does not matter.

• ways to reduce operator stress, such as visual aid, sound aid;

• more effective team communication methods;

• monotonous tasks versus variety of tasks;

• effects of talking while operation is in progress, such as talking on the cell phone; and

• effects of a noisy operating environment.

While this thesis is not conclusively on how a team should be managed, but a step in

the right direction to the ultimate goal of producing the best human robot teams.

52



www.manaraa.com

References

[1] K. J. Arrow. The limits of organization. WW Norton & Company, 1974.

[2] L. F. Bertuccelli, N. W. M. Beckers, and M. L. Cummings. Developing operator models

for UAV search scheduling. In Proceedings of the Guidance, Navigation, and Control

Conference, 2010.

[3] E. Bonabeau. Agent-based modeling: Methods and techniques for simulating human

systems. Proceedings of the National Academy of Sciences of the United States of America,

99(Suppl 3):7280, 2002.

[4] J. Casper and R. R. Murphy. Human-robot interactions during the robot-assisted urban

search and rescue response at the world trade center. IEEE Transactions on Systems,

Man, and Cybernetics, Part B: Cybernetics, 33(3):367–385, 2003.

[5] J. W. Crandall, M. A. Goodrich, D. R. Olsen Jr, and C. W. Nielsen. Validating human-

robot interaction schemes in multitasking environments. IEEE Transactions on Systems,

Man and Cybernetics, Part A: Systems and Humans, 35(4):438–449, 2005.

[6] M. L. Cummings and S. Guerlain. Developing operator capacity estimates for supervisory

control of autonomous vehicles. Human Factors, 49(1):1, 2007.

[7] M. L. Cummings, A. Kirschbaum, A. Sulmistras, and J. T. Platts. STANAG 4586 Human

supervisory control implications. Air and Weapon Systems Dept, Dstl Farnborough &

the Office of Naval Research, 2006.

[8] M. L. Cummings and P. J. Mitchell. Operator scheduling strategies in supervisory

control of multiple UAVs. Aerospace Science and Technology, 11(4):339–348, 2007.

[9] M. L. Cummings and P. J. Mitchell. Predicting controller capacity in remote supervision

of multiple unmanned vehicles. IEEE Systems, Man, and Cybernetics, Part A: Systems

and Humans, 38(2):451–460, 2008.

[10] M. L. Cummings, C. Nehme, J. Crandall, and P. Mitchell. Predicting operator capacity

for supervisory control of multiple UAVs. Innovations in Intelligent Machines-1, 70:11–37,

2007.

53



www.manaraa.com

[11] M. L. Cummings and C. Tsonis. Deconstructing complexity in air traffic control. In

Proceedings of the Human Factors and Ergonomics Society Annual Meeting, volume 49,

pages 25–29. SAGE Publications, 2005.

[12] M. R. Endsley. Toward a theory of situation awareness in dynamic systems. Human

Factors: The Journal of the Human Factors and Ergonomics Society, 37(1):32–64, 1995.

[13] S. R. Fussell, R. E. Kraut, F. J. Lerch, W. L. Scherlis, M. M. McNally, and J. J. Cadiz.

Coordination, overload and team performance: effects of team communication strategies.

In Proceedings of the ACM Conference on Computer Supported Cooperative Work, pages

275–284. ACM, 1998.

[14] B. Gates. A robot in every home. Scientific American, 296(1):58–65, 2007.

[15] B. Gerkey and M. J. Mataric. A formal framework for the study of task allocation in

multi-robot systems. International Journal of Robotics Research, 23(9):939–954, 2004.

[16] G. N. Gilbert. Agent-based models. Sage Publications, Inc, 2008.

[17] M. A. Goodrich, T. W. McLain, J. D. Anderson, J. Sun, and J. W. Crandall. Managing

autonomy in robot teams: Observations from four experiments. In Proceedings of the

ACM/IEEE International Conference on Human-robot Interaction, page 32. ACM, 2007.

[18] M. A. Goodrich and D. R. Olsen Jr. Seven principles of efficient human robot interaction.

In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics,

volume 4, pages 3942–3948. IEEE, 2003.

[19] J. Kavanagh. Stress and performance: A review of the literature and its applicability to

the military. Technical report, DTIC Document, 2005.

[20] B. Latane, K. Williams, and S. Harkins. Many hands make light the work: The causes and

consequences of social loafing. Journal of Personality and Social Psychology, 37(6):822,

1979.

[21] M. Lewis, J. Polvichai, K. Sycara, and P. Scerri. Scaling-up human control for large

UAV teams. Human Factors of Remotely Operated Vehicles, 7:237–250, 2006.

[22] B. Mekdeci and M. L. Cummings. Modeling multiple human operators in the supervisory

control of heterogeneous unmanned vehicles. In Proceedings of the 9th Workshop on

Performance Metrics for Intelligent Systems, pages 1–8. ACM, 2009.

54



www.manaraa.com

[23] C. W. Nielsen, M. A. Goodrich, and R. W. Ricks. Ecological interfaces for improving

mobile robot teleoperation. IEEE Transactions on Robotics, 23(5):927–941, 2007.

[24] N. Nohria and R. Gulati. What is the optimum amount of organizational slack? a

study of the relationship between slack and innovation in multinational firms. European

Management, 15:603–611, 1997.

[25] D. R. Olsen and M. A. Goodrich. Metrics for evaluating human-robot interactions. In

Proceedings of PrivilEge and Role Management Infrastructure Standards, 2003.

[26] D. R. Olsen Jr and S. B. Wood. Fan-out: measuring human control of multiple robots.

In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,

pages 231–238. ACM, 2004.

[27] T. B. Sheridan. Human and computer control of undersea teleoperators. Technical

report, DTIC Document, 1978.

[28] T. B. Sheridan. Telerobotics, Automation, and Human Supervisory Control. The MIT

Press, 1992.

[29] G. B. Thomas, R. L. Finney, and M. D. Weir. Calculus and analytic geometry, volume 30.

Addison-Wesley Reading, MA., 1996.

[30] J. M. Whetten and M. A. Goodrich. Specialization, fan-out, and multi-human/multi-

robot supervisory control. In Proceedings of the 5th ACM/IEEE International Conference

on Human-robot Interaction, pages 147–148. ACM, 2010.

[31] Wikipedia. Supervisory control theory.

[32] D. D. Woods, J. Tittle, M. Feil, and A. Roesler. Envisioning human-robot coordination

in future operations. IEEE Transactions on Systems, Man, and Cybernetics, Part C:

Applications and Reviews, 34(2):210–218, 2004.

[33] H. A. Yanco and J. Drury. Classifying human-robot interaction: an updated taxonomy.

In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics,

volume 3, pages 2841–2846. IEEE, 2004.

[34] H. A. Yanco, J. L. Drury, and J. Scholtz. Beyond usability evaluation: Analysis of

human-robot interaction at a major robotics competition. Human-Computer Interaction,

19(1):117–149, 2004.

55



www.manaraa.com

[35] J. Zhao, M. Dessouky, and S. Bukkapatnam. Optimal slack time for schedule-based

transit operations. Transportation Science, 40(4):529–539, 2006.

56


	Brigham Young University
	BYU ScholarsArchive
	2012-03-02

	Using Agent-Based Models to Understand Multi-Operator Supervisory Control
	Yisong Guo
	BYU ScholarsArchive Citation


	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Current Uses of Teleoperated Autonomous Robots
	1.2 Human Robot Teams
	1.3 Thesis Statement
	1.4 Thesis Organization

	2 Related Literature
	2.1 Operator Performance
	2.1.1 Task Performance
	2.1.2 Scheduling
	2.1.3 Cognitive Workload, Stress and Performance
	2.1.4 Awareness and Performance
	2.1.5 Specialization

	2.2 Robot Autonomy and Fan-out
	2.2.1 Interaction Time
	2.2.2 Neglect Time
	2.2.3 Robot Attention Demand

	2.3 Team Performance Parameters
	2.3.1 Single Human, Single Robot
	2.3.2 Multi-Operator Communication
	2.3.3 Mechanistic vs. Organic Structures
	2.3.4 Human Supervisory Control

	2.4 Agent-based Simulation

	3 Methods
	3.1 What is in the Agent-Based Simulation?
	3.1.1 Agent
	3.1.2 Level of Autonomy
	3.1.3 Fan-out
	3.1.4 Cost and Budget
	3.1.5 Slack

	3.2 Modeling Assumptions
	3.3 Estimating Performance
	3.3.1 Operator Load & Performance Measurement
	3.3.2 Operator Load & Operator Stress

	3.4 Multi-Operator Performance
	3.4.1 Communication
	3.4.2 Specialization


	4 Simulations and Analysis
	4.1 How Much Workload Can an Operator Handle?
	4.1.1 Individual Agents
	4.1.2 Team of Agents

	4.2 When Is 2 > 1+1?
	4.3 Communication and How It Can Help
	4.3.1 Peer to Peer
	4.3.2 Commander

	4.4 Specialization and How It Helps

	5 Conclusion
	References

